Druid Segment Balance 及其代价计算函数分析

一. 引言 Druid 的查询需要有实时和历史部分的 Segment,历史部分的 Segment 由 Historical 节点加载,所以加载的效率直接影响了查询的 RT(不考虑缓存)。查询通常需要指定一个时间范围[StartTime, EndTime],该时间范围的内所有 Segment 需要由 Historical 加载,最差的情况是所有 Segment 不幸都储存在一个节点上,加载无疑会很慢;…

Read More

Spark Streaming在数据平台日志解析功能的应用

一、日志解析功能的背景: 通过日志,我们可以获得很多有用的信息,最常见的日志信息包括应用产生的访问日志、系统的监控日志,本文所针对的日志是大数据离线任务产生的运行日志。目前日志解析功能依附于有赞大数据平台,也就是有赞的data_platform,为该平台的一个功能。 目前支持解析的日志类型包括:Hive任务、Spark任务、Datay增量任务、导入任务、导出、MR任务、Hbasebulk、脚本任务等。dataplatform支持的调度类型为:批量重跑、测试类型、正常调度和手动导入任务。 做这个日志解析部分的目的分为几个,…

Read More

HBase 读流程解析与优化的最佳实践

一、前言 本文首先对 HBase 做简单的介绍,包括其整体架构、依赖组件、核心服务类的相关解析。再重点介绍 HBase 读取数据的流程分析,并根据此流程介绍如何在客户端以及服务端优化性能,同时结合有赞线上 HBase 集群的实际应用情况,将理论和实践结合,希望能给读者带来启发。如文章有纰漏请在下面留言,我们共同探讨共同学习。 二、 HBase 简介 HBase 是一个分布式,可扩展,…

Read More

Druid在有赞的实践

一、Druid介绍 Druid 是 MetaMarket 公司研发,专为海量数据集上的做高性能 OLAP (OnLine Analysis Processing)而设计的数据存储和分析系统,目前Druid 已经在Apache基金会下孵化。Druid的主要特性: 交互式查询( Interactive Query ): Druid 的低延迟数据摄取架构允许事件在它们创建后毫秒内查询,因为 Druid 的查询延时通过只读取和扫描有必要的元素被优化。Druid 是列式存储,…

Read More

Flink 在有赞实时计算的实践

一、前言 这篇主要由五个部分来组成: 首先是有赞的实时平台架构。 其次是在调研阶段我们为什么选择了 Flink。在这个部分,主要是 Flink 与 Spark 的 structured streaming 的一些对比和选择 Flink 的原因。 第三个就是比较重点的内容,Flink 在有赞的实践。这其中包括了我们在使用 Flink 的过程中碰到的一些坑,也有一些具体的经验。 第四部分是将实时计算…

Read More